Options
Simulation of a kinetic model integrated with variable catalyst holdup applied in industrial fluid catalytic cracking risers
Date Issued
01-05-2022
Author(s)
Kiri Sivakumar, K. Harish
Aravamudan, Kannan
Abstract
The importance of the axial catalyst holdup on the accurate prediction of reaction yields from Fluidized Catalytic Cracking Unit (FCCU) risers was explored in this study. The Kunii and Levenspiel model was incorporated in the FCCU riser simulations for predicting the solid holdup. Two approaches were compared-the popular one assuming Constant Holdup (CH) and the other incorporating Variable Holdup (VH) in the reaction kinetics models. Simulation predictions using these two approaches were fitted to the yield profiles obtained from industrial plant data reported in the literature. The kinetic parameter estimates, including frequency factors and coking parameters obtained from these two approaches, were quite similar, indicating insensitivity to catalyst holdup. However, the kinetic model incorporating VH expression could predict the plant conversion and yield to within ±10% error throughout the riser. In contrast, the CH model led to predictions that were rather erroneous (>±25%) at the riser bottom as the catalyst particle acceleration zone was neglected. Temperature, gas density, catalyst particle, and gas phase velocity profiles obtained from the VH approach were considerably different from those obtained using the CH approach. The VH approach showed that the slip factor, especially, was quite distinct as it reached a peak value before decaying exponentially. On the other hand, the CH model showed a monotonic increase in slip factor along the riser.
Volume
20