Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Design of Communication Systems Using Deep Learning: A Variational Inference Perspective
 
  • Details
Options

Design of Communication Systems Using Deep Learning: A Variational Inference Perspective

Date Issued
01-12-2020
Author(s)
Raj, Vishnu
Kalyani, Sheetal 
Indian Institute of Technology, Madras
DOI
10.1109/TCCN.2020.2985371
Abstract
Recent research in the design of end to end communication system using deep learning has produced models which can outperform traditional communication schemes. Most of these architectures leveraged autoencoders to design the encoder at the transmitter and decoder at the receiver and train them jointly by modeling transmit symbols as latent codes from the encoder. However, in communication systems, the receiver has to work with noise corrupted versions of transmit symbols. Traditional autoencoders are not designed to work with latent codes corrupted with noise. In this work, we provide a framework to design end to end communication systems which accounts for the existence of noise corrupted transmit symbols. The proposed method uses deep neural architecture. An objective function for optimizing these models is derived based on the concepts of variational inference. Further, domain knowledge such as channel type can be systematically integrated into the objective. Through numerical simulation, the proposed method is shown to consistently produce models with better packing density and achieving it faster in multiple popular channel models as compared to the previous works leveraging deep learning models.
Volume
6
Subjects
  • autoencoders

  • deep learning

  • Physical layer

  • variational inference...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback