Options
Energy-Absorbing Capacity of Polyurethane/SiC/Glass-Epoxy Laminates under Impact Loading
Date Issued
01-04-2017
Author(s)
Balaganesan, G.
Akshaj Kumar, V.
Khan, V. C.
Srinivasan, S. M.
Abstract
This paper presents the energy absorption of target materials with combinations of polyurethane (PU) foam, PU sheet, SiC inserts, and SiC plate bonded to glass fiber reinforced composite laminate backing during impact loading. SiC inserts and SiC plates are bonded as front layer to enhance energy absorption and to protect composite laminate. The composite laminates are prepared by hand lay-up process and other layers are bonded by using epoxy. Low-velocity impact is conducted by using drop mass setup, and mild steel spherical nosed impactor is used for impact testing of target in fixed boundary conditions. Energy absorption and damage are compared to the target plates when subjected to impact at different energy levels. The energy absorbed in various failure modes is analyzed for various layers of target. Failure in the case of SiC inserts is local, and the insert under the impact point is damaged. However, in the other cases, the SiC plate is damaged along with fiber failure and delamination on the composite backing laminate. It is observed that the energy absorbed by SiC plate layered target is higher than SiC inserts layered target.
Volume
139