Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Design space exploration and optimization using self-organizing maps
 
  • Details
Options

Design space exploration and optimization using self-organizing maps

Date Issued
01-09-2020
Author(s)
Thole, Sidhant Pravinkumar
Ramu, Palaniappan 
Indian Institute of Technology, Madras
DOI
10.1007/s00158-020-02665-6
Abstract
Identifying regions of interest (RoI) in the design space is extremely useful while building metamodels with limited computational budget. Self-organizing maps (SOM) are used as a visualization technique for design space exploration that permits identifying RoI. Conventional implementation of SOM is susceptible to folds or intersections that hinder visualizing the design space. This work proposes a modified SOM algorithm whose maps are interpretable and that does not fold and allows smoother input and performance space visualization. The modified algorithm enables identification of RoI and additional sampling in the identified RoI allows building accurate Kriging metamodel, which is then used for optimization. The proposed approach is demonstrated on benchmark nonlinear analytical examples and two practical engineering design examples. Results show that the proposed approach is highly efficient in identifying the RoI and in obtaining the optima with less samples.
Volume
62
Subjects
  • Design of experiments...

  • Design space explorat...

  • Self-organizing maps

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback