Options
Coupled dynamic analyses of deep-water semi-submersible with new spread mooring system
Date Issued
01-01-2020
Author(s)
Abstract
Offshore complaint structures dominate the deepwater oil exploration and production due to their adaptive geometric form and well-established construction practices. Semi-submersible is one of the widely preferred, floating production systems due to its form-dominant ability, better stability characteristics, and best constructional features. It is usually position-restrained using a dynamic-positioning system (active-restraining) or mooring system (passive-restraining); being less-sensitive to freak ocean environment is an added advantage. The Semisubmersible, chosen for the present study is based on a similar configuration of a 6th generation deep-water Hai Yang Shi You (HYSY) - 981 platforms, commissioned by the China National Offshore Oil Corporation (CNOOC) in 2012. A sixteen-point, spread catenary-mooring without submerged buoy (case-1) in the form of chain-wire-chain type configuration is used for position-restraining. Response behavior of the semi-submersible with a conventional spread catenary-mooring system with a submerged buoy (case-2) is compared. API spectrum is used for computing wind loads, while the JONSWAP spectrum is used to represent irregular waves for various directions of wave heading. The effect of non-linearly varying current is considered up to 10% of water depth. Numerical analyses of the semisubmersible are carried out under 10-years, and 100-years return period events using Ansys Aqwa. Under wind, wave, and current loads, motion responses of the Semi-submersible at 1500 m and 2000 m water depths are investigated for both the cases in time-domain. Dynamic mooring tension variations arise from the environmental loads are further investigated for a fatigue failure using the S-N curve approach. It is found that the fatigue life of the mooring lines after the inclusion of the buoy is enhanced. It was also observed that, during failure of mooring lines there is an increase in tension of the mooring lines which are adjacent to the failed mooring lines and this is due to the transfer of mooring load and hence reducing their fatigue life.
Volume
1