Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. New Routes for Multicomponent Atomically Precise Metal Nanoclusters
 
  • Details
Options

New Routes for Multicomponent Atomically Precise Metal Nanoclusters

Date Issued
12-01-2021
Author(s)
Khatun, Esma
Pradeep, Thalappil
DOI
10.1021/acsomega.0c04832
Abstract
Atomically precise metal nanoclusters (NCs), protected by a monolayer of ligands, are regarded as potential building blocks for advanced technologies. They are considered as intermediates between the atomic/molecular regime and the bulk. Incorporation of foreign metals in NCs enhances several of their properties such as catalytic activity, luminescence, and so on; hence, it is of high importance for tuning their properties and broadening the scope of applications. In most of the cases, enhancement in specific properties was observed upon alloying due to the synergistic effect. In the past several years, many alloy clusters have been synthesized, which show a tremendous change in the properties than their monometallic analogs. However, controlling the synthesis and tuning the structures of alloy NCs with atomic precision are major challenges. Various synthetic methodologies have been developed so far for the controlled synthesis of alloy NCs. In this perspective, we have highlighted those diverse synthetic routes to prepare alloys, which include co-reduction, galvanic reduction, antigalvanic reduction, metal deposition, ligand exchange, intercluster reaction, and reaction of NCs with bulk metals. Advancement in synthetic procedures will help in the preparation of alloy NCs with the desired structure and composition. Future perceptions concerning the progress of alloy nanocluster science are also provided.
Volume
6
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback