Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication14
  4. Face recognition from images with high pose variations by transform vector quantization
 
  • Details
Options

Face recognition from images with high pose variations by transform vector quantization

Date Issued
2006
Author(s)
Das, A
Balwani, M
Thota, R
Ghosh, P
Abstract
Pose and illumination variations are the most dominating and persistent challenges haunting face recognition, leading to various highly-complex 2D and 3D model based solutions. We present a novel transform vector quantization (TVQ) method which is fast and accurate and yet significantly less complex than conventional methods. TVQ offers a flexible and customizable way to capture the pose variations. Use of transform such as DCT helps compressing the image data to a small feature vector and judicious use of vector quantization helps to capture the various poses into compact codebooks. A confidence measure based sequence analysis allows the proposed TVQ method to accurately recognize a person in only 3-9 frames (less than (1)/(2) a second) from a video sequence of images with wide pose variations.
Volume
4338
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback