Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication12
  4. Tool wear estimation by group method of data handling in turning
 
  • Details
Options

Tool wear estimation by group method of data handling in turning

Date Issued
01-01-1994
Author(s)
Ravindra, H. V.
Raghunandan, M.
Srinivasa, Y. G.
Krishnamurthy, R.
DOI
10.1080/00207549408957001
Abstract
Tool weal' monitoring and estimation are essential for improved productivity of manufacturing systems. Multi-sensory approaches based on force, vibration and Acoustic Emission (AE)signals have been recognized as potential methods for tool wear monitoring. In the present work, steady-state components of force,dynamics ofthe main cutting forceand vibration in the direction of the main cutting forcehave been used for on-line tool wear estimation in a turning process. The group method of data handling (GMDH), a heuristic self-organizing method of modelling, has been used to integrate information from different sensors and the cutting conditions to obtain estimates of tool wear. Differentmethods of preprocessing the forces have been attempted to determine the best method to suit the data. Various heuristics of GMDH have been analysed to obtain the appropriate models for tool wear estimation. The results show that GMDH can be effectively used to integrate sensor information and obtain reliable estimates of tool wear. © 1994 Taylor & Francis Group, LLC.
Volume
32
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback