Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Ionic amphiphile stabilized reverse micellar systems and their implications for nanoencapsulation
 
  • Details
Options

Ionic amphiphile stabilized reverse micellar systems and their implications for nanoencapsulation

Date Issued
05-07-2021
Author(s)
Abraham, Leggins
Tiju Thomas 
Indian Institute of Technology, Madras
Pichumani, Moorthi
DOI
10.1016/j.colsurfa.2021.126591
Abstract
Hypothesis: Encapsulation of core nanoparticles using reverse micelles is a widely used approach owing to its effective organization. Hence, it is of value to analyze the physicochemical mechanisms associated with the reverse micelle-based encapsulation for the choice of appropriate surfactant for the encapsulation process. The presence of ionic micelles, catalyst ions and surface charge of the core nanoparticles are expected to influence the stability of reverse micelles. Hence, it is of value to find the optimized conditions for stable reverse micelles formation through understanding the multiple double layer formation inside of ionic reverse micelles. Experiments: Reverse micelle systems stabilized by non-ionic, anionic and cationic surfactants are formulated with the presence of ammonia ions and negatively charged core nanoparticles. The structure of reverse micelles is studied by measuring its average hydrodynamic diameter and optical transmittance measurements. Shell encapsulation experiments are performed in stable and unstable reverse micellar structures. Findings: Ionic surfactants help to form stable reverse micellar structures. Multiple double layers formation is explained in ionic reverse micelles for the first time. Magnetite@silica is chosen as a model system to demonstrate the observed effects. The results obtained could remove the complexity in understanding the ionic reverse micellar systems for the functionalization of nanoparticles.
Volume
620
Subjects
  • Core@shell

  • Double layers

  • Ionic reverse micelle...

  • Nano-encapsulation

  • Surfactant

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback