Options
Study of manoeuvrability of container ship by static and dynamic simulations using a RANSE-based solver
Date Issued
02-04-2016
Author(s)
Shenoi, R. Rajita
Indian Institute of Technology, Madras
Indian Institute of Technology, Madras
Abstract
The numerical study of manoeuvrability of surface ships necessitates the determination of the hydrodynamic derivatives in the equations of motion. Standard manoeuvring tests are simulated to evaluate the ship's manoeuvring qualities. This paper deals with the estimation of linear, nonlinear and roll-coupled hydrodynamic derivatives of a container ship by numerically simulating static and dynamic tests at different roll angles using a RANSE solver. The mathematical model suitable for the nonlinear roll-coupled steering model for high-speed container ships is considered here. In order to include the effect of roll on the ship, the roll-dependent derivatives are estimated by using static and dynamic tests numerically performed at discrete heel angles. Standard definitive manoeuvres such as turning circle and zig-zag tests are numerically simulated by solving the equations of motion and the results are verified with those obtained by using experimental values.
Volume
11