Options
Snakecut: An integrated approach based on active contour and grabcut for automatic foreground object segmentation
Date Issued
01-01-2009
Author(s)
Abstract
Interactive techniques for extracting the foreground object from an image have been the interest of research in computer vision for a long time. This paper addresses the problem of an efficient, semi-interactive extraction of a foreground object from an image. Snake (also known as Active contour) and GrabCut are two popular techniques, extensively used for this task. Active contour is a deformable contour, which segments the object using boundary discontinuities by minimizing the energy function associated with the contour. GrabCut provides a convenient way to encode color features as segmentation cues to obtain foreground segmentation from local pixel similarities using modified iterated graphcuts. This paper first presents a comparative study of these two segmentation techniques, and illustrates conditions under which either or both of them fail. We then propose a novel formulation for integrating these two complimentary techniques to obtain an automatic foreground object segmentation. We call our proposed integrated approach as “SnakeCut”, which is based on a probabilistic framework. To validate our approach, we show results both on simulated and natural images.