Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication9
  4. Deformation and shape measurement using multiple wavelength microscopic TV holography
 
  • Details
Options

Deformation and shape measurement using multiple wavelength microscopic TV holography

Date Issued
01-12-2009
Author(s)
Kumar, U. Paul
Mohan, N. Krisna
Kothiyal, Mahendra P.
Asundi, Anand K.
DOI
10.1117/1.3083260
Abstract
Characterization of deformation and surface shape is an important parameter in quality testing of micro-objects in view of the functionality, reliability, and integrity of the components. Single-wavelength TV holography is widely used for deformation analysis. However, the single-wavelength TV holographic configuration suffers from overcrowding of fringes for large deformation that sets a limitation due to speckle decorrelation for quantitative fringe analysis. Furthermore, shape cannot be determined when using single wavelength. In this paper, we describe a multiple-wavelength microscopic TV holographic configuration that uses sequentially recorded phase-shifted frames at three different wavelengths before and after deformation of the specimen for evaluation of relatively large deformation fields at the effective wavelengths. Use of multiple wavelengths for deformation and shape evaluation is discussed. The design of the system along with the experimental results on small-scale rough specimens under static load is presented. © 2009 Society of Photo-Optical Instrumentation Engineers.
Volume
48
Subjects
  • fringe analysis

  • MEMS testing

  • multiple-wavelength m...

  • phase shifting

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback