Options
Resource recovery from discarded COVID-19 PPE kit through catalytic fast pyrolysis
Date Issued
01-03-2023
Author(s)
Panchal, Nikhilkumar
Indian Institute of Technology, Madras
Abstract
During the COVID-19 pandemic, the world saw an exponential surge in the production of Personal Protective Equipment (PPE) kits, which eventually got discarded in the biomedical waste stream. In this study, thirteen different polymer samples from the PPE kit were collected and characterized using Fourier transform infrared spectrometer, thermogravimetric analysis, and analytical pyrolysis-gas chromatograph/mass spectrometry. The characterization data showed that about 94 % by mass of components were made of only three polymers, viz. polypropylene (PP, 75.6 wt %), polyethylene terephthalate (PET, 12.5 wt %), and polycarbonate (PC, 6 wt %). The analytical pyrolysis of the PPE coverall suit (PP) yielded mainly alkenes containing 2,4-dimethyl-1-heptene as the major compound with 17 wt % yield at 600 °C. The pyrolysates from face shield (PET) were rich in benzoic acid (5.8 wt %) and acetophenone (4.8 wt %), while those from safety goggles (PC) were rich in phenol (17.6 wt %) and p-cresol (12.4 wt %) at 600 °C. HZSM-5 and HY zeolites were used for the catalytic upgradation of pyrolysates especially from PP, PET and PC. The temperature and feed-to-catalyst ratio were optimized by performing catalytic fast pyrolysis experiments at 500 °C, 600 °C and 700 °C with different feed-to-catalyst ratios 1:2, 1:4, and 1:6 (w/w). The yield of aromatic hydrocarbons, viz., BTEX (benzene, toluene, ethylbenzene, xylenes) and naphthalene, was maximum (∼25.7 wt %) from PP coverall when HY catalyst was used at 600 °C and 1:6 (w/w) loading. In the case of PET face shield, the total yield of BTEX, naphthalene and biphenyl was maximum (27.9 wt %) at 600 °C and 1:4 (w/w) of HZSM-5, while in the case of PC goggles, it was maximum (18.6 wt %) at 700 °C and 1:4 (w/w) of HY. This study shows that the entire PPE kit can be valorized via catalytic fast pyrolysis to generate petrochemical products and platform molecules like monoaromatic hydrocarbons at high selectivities.
Volume
170