Options
A unified approach to space robot kinematics
Date Issued
01-12-1996
Author(s)
Saha, Subir Kumar
Abstract
An essential step in deriving kinematic models of free-flying space robots, consisting of a free-base and a manipulator mounted on it, is to write the total momenta of the system at hand. The momenta are, usually, expressed as the functions of the velocities of a preselected body that belongs to the robot, e.g., the free-base. In this paper, no preselection is recommended. On the contrary, the total momenta are expressed as the functions of the velocities of an arbitrary body of the space robot, namely, the primary body (PB). The identity of the PB, unlike the conventional approaches, need not be known at this stage. Therefore, the generalized expressions for the total momenta are obtained. The resulting expressions can explain the existing kinematic models and how they affect the efficiencies of the associated control algorithms. Based on the proposed approach, it is shown that if the end-effector motion is the only concern, as desired in kinematic control, it should be selected as the PB. This leads to the most efficient algorithms. © 1996 IEEE.
Volume
12