Options
Modeling the underwater light field fluctuations in coastal oceanic waters: Validation with experimental data
Date Issued
01-03-2016
Author(s)
Abstract
Modeling of the wave-induced underwater light fluctuations at near-surface depths in coastal oceanic waters is challenging because of the surface roughness and strong anisotropic effects of the light field. In the present work, a simple and computationally efficient radiative transfer model is used for the wind-driven sea surface for simulating underwater light fields such as downwelling irradiance (Ed), upwelling irradiance (Eu), and upwelling radiance (Lu) in a spatial domain. It is an extension of our previous work that essentially combines the air–sea interface of the wind-driven sea surface with transmittance and reflectance along with the diffuse and direct components of the homogenous and inhomogeneous water column. The present model simulates underwater light fields for any possible values of absorption and backscattering coefficients. To assess the performance of the model, the Ed, Eu, and Lu profiles predicted by the model are compared with experimental data from relatively clear and turbid coastal waters. Statistical results show significantly low mean relative differences regardless of the wavelength. Comparison of the simulated and in-situ time series data measured over rough sea surfaces demonstrates that model-observation agreement is good for the present model. The Hydrolight model when implemented with the modified bottom reflectance and phase function provides significantly better results than the original Hydrolight model without consideration of the bottom slope and vertically varying phase function. However, these results are non-spatial and have errors fluctuating at different wavelengths. To further demonstrate the efficiency of the present model, spatial distribution patterns of the underwater light fields are simulated based on the measured data from a coastal station for different solar zenith angles (under sunny condition). Simulated wave-induced fluctuations of the underwater lights fields show a good consistency with in-situ data for a few near-surface depths. The present model also provides a reasonable approximation for simulating wave-induced effects on the downward irradiance field and its anisotropic conditions caused by the surface roughness, wavelength and angle of incidence.
Volume
51