Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication12
  4. Size-dependent diffusion coefficient in a myopic random walk on a strip
 
  • Details
Options

Size-dependent diffusion coefficient in a myopic random walk on a strip

Date Issued
15-07-1992
Author(s)
Revathi, S.
Valsakumar, M. C.
Balakrishnan, V.
Weiss, G. H.
DOI
10.1016/0378-4371(92)90376-2
Abstract
We consider a random walk in discrete time (n = 0, 1, 2, ...) on a square lattice of finite width in the y-direction, i.e., {j, m | j ε{lunate} Z, m = 1, 2, 3, ..., N}. A myopic walker at (j,1) or (j, N) jumps with probability 1 3 to any of the available nearest-neighbor sites at the end of a time step. This couples the motions in the x- and y-directions, and leads to several interesting features, including a coefficient of diffusion in the x-direction that depends on the transverse size N of the strip. Explicit solutions for 〈x2n〉 (and the lateral variance 〈y2n〉) are given for small values of N. A closed-form expression is obtained for the (discrete Laplace) transform of 〈x2n〉 for general N. The asymptotic behaviors of 〈x2n〉 and 〈y2n〉 are found, the corrections falling off exponentially with increasing n. The results obtained are generalized to a myopic random walk in d dimensions, and it is shown that the diffusion coefficient has an explicit geometry dependence involving the surface-to-volume ratio. This coefficient can therefore serve as a probe of the geometry of the structure on which diffusion takes place. © 1992.
Volume
186
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback