Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Separation of Forward-Backward Waves in the Arterial System using Multi-Gaussian Approach from Single Pulse Waveform
 
  • Details
Options

Separation of Forward-Backward Waves in the Arterial System using Multi-Gaussian Approach from Single Pulse Waveform

Date Issued
01-01-2021
Author(s)
Manoj, Rahul
Raj Kiran, V.
Nabeel, P. M.
Sivaprakasam, Mohanasankar 
Indian Institute of Technology, Madras
Joseph, Jayaraj 
Indian Institute of Technology, Madras
DOI
10.1109/EMBC46164.2021.9630358
Abstract
The arterial pulse waveform has an immense wealth of information in its morphology yet to be explored and translated to clinical practice. Wave separation analysis involves decomposing a pulse wave (pressure or diameter waveform) into a forward wave and a backward wave. The backward wave accumulates reflections due to arterial stiffness gradient, branching and geometric tapering of blood vessels across the arterial tree. The state-of-the-art wave separation analysis is based on estimating the input impedance of the target artery in the frequency/time domain, which requires simultaneously measured or modelled flow velocity and pressure waveform. We are proposing a new method of wave separation analysis using a multi-gaussian decomposition. The novelty of this approach is that it requires only a single pulse waveform at the target artery. Our method was compared against the triangular waveform-based impedance method. We successfully separated forward and backward waveform from the pressure waveform with maximum RMSE less than 5 mmHg and mean RMSE of 1.31 mmHg when compared against the triangular flow/impedance method. Results demonstrated a statistically significant correlation (r>0.66, p<0.0001) for Reflection Magnitude (RM) and Reflection Index (RI) for the multi-gaussian approach against the triangular flow method for 105 virtual subjects. The range of RM was from 0.35 to 0.97 (RI: 27.53% to 49.29%). This method proves to be a technique for evaluating reflection parameters if only a single pulse measurement is available from any artery.Clinical Relevance - This simulation study supplements the evidence for wave reflections. It provides a new method to study wave reflections using only a single pulse waveform without the need for any measured or modelled flow.
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback