Options
Mesoporous titania-embedded polyacrylonitrile composite nanofibrous membrane for particulate matter filtration
Date Issued
01-08-2021
Author(s)
Reena, P.
Gobi, N.
Chitralekha, P.
Thenmuhil, D.
Kamaraj, V.
Abstract
In the present work, mesoporous titania (MT)-embedded polyacrylonitrile (PAN) nanofibrous membranes have been developed and studied for their efficiency in particulate matter (PM) filtration. Using Box–Behnken method, 15 nanofibrous composite membranes were obtained through electrospinning by choosing three different process variables, such as MT (weight ratio), areal density (g m−2), and spinning time (h). The characterization of resulted nanofibrous composite membranes revealed that the homogenous distribution of MT (2.9 nm) within the PAN delivers high porosity as well as air permeability. Further, filtration efficiency (FE) was also analyzed for PM from 0.3 µm to 3 µm. PM filtration studies suggested that the nanofibrous composite membrane developed from 15% MT, spin time of 2 h, and areal density of 80 g m−2 possesses overall efficiency of 96.4%, without pressure drop for the composite. The results suggest that the role of MT was found to be significant in achieving successful filtration of PM. In addition to successful FE, the desirability value of the developed composite was also calculated statistically and the optimized composite membrane was identified.
Volume
34