Options
Role of intermediate 4 f states in tuning the band structure of high entropy oxides
Date Issued
01-05-2020
Author(s)
Sarkar, Abhishek
Eggert, Benedikt
Velasco, Leonardo
Mu, Xiaoke
Lill, Johanna
Ollefs, Katharina
Indian Institute of Technology, Madras
Wende, Heiko
Kruk, Robert
Brand, Richard A.
Hahn, Horst
Abstract
High entropy oxides (HEOs) are single-phase solid solutions consisting of 5 or more cations in approximately equiatomic proportions. In this study, we show the reversible control of optical properties in a rare-earth (RE) based HEO-(Ce0.2La0.2Pr0.2Sm0.2Y0.2)O2-δ and subsequently utilize a combination of spectroscopic techniques to derive the features of the electronic band structure underpinning the observed optical phenomena. Heat treatment of the HEO under a vacuum atmosphere followed by reheat treatment in air results in a reversible change in the bandgap energy, from 1.9 eV to 2.5 eV. The finding is consistent with the reversible changes in the oxidation state and related f-orbital occupancy of Pr. However, no pertinent changes in the phase composition or crystal structure are observed upon the vacuum heat treatment. Furthermore, annealing of this HEO under a H2 atmosphere, followed by reheat treatment in air, results in even larger but still a reversible change in the bandgap energy from 1.9 eV to 3.2 eV. This is accompanied by a disorder-order type crystal structure transition and changes in the O 2p-RE 5d hybridization evidenced from X-ray absorption near-edge spectra (XANES). The O K and RE M4,5/L3 XANES indicate that the presence of Ce and Pr (in 3+/4+ states) leads to the formation of intermediate 4f energy levels between the O 2p and the RE 5d gap in HEO. It is concluded that heat treatment under reducing/oxidizing atmospheres affects these intermediate levels, thus offering the possibility to tune the bandgap energy in HEOs.
Volume
8