Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication4
  4. Directivity-based passive barrier for local control of low-frequency noise
 
  • Details
Options

Directivity-based passive barrier for local control of low-frequency noise

Date Issued
01-12-2018
Author(s)
Sharma, Gyani Shankar
Sarkar, Abhijit 
Indian Institute of Technology, Madras
DOI
10.1142/S2591728518500123
Abstract
This work concerns with improving the transmission loss offered by a noise barrier separating two acoustic spaces in the low-frequency range. A novel concept of local mitigation of the transmitted noise at a target receiver location is presented by controlling the directivity of the transmitted noise through a point mass attachment on the barrier surface. Mass attachment at an arbitrary location is shown to increase the noise transmission. Optimal locations of the mass to minimize the sound transmission in the normal, oblique and tangential directions to the barrier are obtained. Optimal placement of the mass results in a major transmission reduction around the target location, much more than achievable by a uniform distribution of the mass over the barrier. Total transmitted pressure is also reduced; however, local reduction around the target location is much higher. The effects of variation in the excitation frequency and magnitude of the attached mass are investigated.
Volume
26
Subjects
  • Acoustic directivity ...

  • Local noise control

  • Low-frequency noise b...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback