Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication5
  4. On the denseness of minimum attaining operators
 
  • Details
Options

On the denseness of minimum attaining operators

Date Issued
01-09-2018
Author(s)
Kulkarni, S. H.
Ramesh, G.
DOI
10.7153/oam-2018-12-41
Abstract
Let H 1 , H 2 be complex Hilbert spaces and T be a densely defined closed linear operator (not necessarily bounded). It is proved that for each ε > 0, there exists a bounded operator S with ‖S‖ ≤ ε such that T + S is minimum attaining. Further, if T is bounded below, that is if there exists m > 0 such that ‖Tx‖ ≥ m‖x‖ for every x in the domain of T, then S can be chosen to be rank one.
Volume
12
Subjects
  • Densely defined close...

  • Gap metric

  • Lindenstrauss theorem...

  • Minimum attaining ope...

  • Weyl’s theorem

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback