Options
A hierarchical technique for statistical path selection and criticality computation
Date Issued
01-08-2017
Author(s)
Chithira, P. R.
Indian Institute of Technology, Madras
Abstract
Due to process variations, every path in the circuit is associated with a probability of being critical and a measure of this probability is the criticality of the path. Identification of critical paths usually proceeds in two steps, namely, generation of a candidate path set followed by computation of path criticality. As criticality computation is expensive, the candidate path set is chosen using simpler metrics. However, these metrics are not directly related to path criticality and, often, the set also contains low criticality paths that do not need to be tested. In this article, we propose a hierarchical technique that directly gives all paths above a global criticality threshold. The circuit is divided into disjoint groups at various levels. We show that the criticality of a group at each level of hierarchy can be computed using criticality of the parent group and the local complementary delay within the group. Low criticality groups are pruned at every level, making the computation efficient. This recursive partitioning and group criticality computation is continued until the group criticality falls below a threshold. Beyond this, the path selection within the group is done using branch-and-bound algorithm with global criticality as the metric. This is possible, since our method for criticality computation is very efficient. Unlike other techniques, path selection and criticality computation are integrated together so that when the path selection is complete, path criticality is also obtained. The proposed algorithm is tested with ISCAS'85, ISCAS'89, and ITC'99 benchmark circuits and the results are verified using Monte Carlo simulation. The experimental results suggest that the proposed method gives better accuracy on average with around 90% reduction in run-time.
Volume
23