Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. Stationary states of an active Brownian particle in a harmonic trap
 
  • Details
Options

Stationary states of an active Brownian particle in a harmonic trap

Date Issued
01-08-2023
Author(s)
Nakul, Urvashi
Manoj Gopalakrishnan 
Indian Institute of Technology, Madras
DOI
10.1103/PhysRevE.108.024121
Abstract
We study the stationary states of an overdamped active Brownian particle (ABP) in a harmonic trap in two dimensions via mathematical calculations and numerical simulations. In addition to translational diffusion, the ABP self-propels with a certain velocity, whose magnitude is constant, but its direction is subject to Brownian rotation. In the limit where translational diffusion is negligible, the stationary distribution of the particle's position shows a transition between two different shapes, one with maximum and the other with minimum density at the center, as the trap stiffness is increased. We show that this nonintuitive behavior is captured by the relevant Fokker-Planck equation, which, under minimal assumptions, predicts a continuous phase transition-like change between the two different shapes. As the translational diffusion coefficient is increased, both these distributions converge into the equilibrium, Boltzmann form. Our simulations support the analytical predictions and also show that the probability distribution of the orientation angle of the self-propulsion velocity undergoes a transition from unimodal to bimodal forms in this limit. We also extend our simulations to a three-dimensional trap and find similar behavior.
Volume
108
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback