Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Effect of particle fraction on phase transitions in an active-passive particles system
 
  • Details
Options

Effect of particle fraction on phase transitions in an active-passive particles system

Date Issued
01-04-2020
Author(s)
Agrawal, Naveen Kumar
Mahapatra, Pallab Sinha 
Indian Institute of Technology, Madras
DOI
10.1103/PhysRevE.101.042607
Abstract
We study phase transition in a binary system of monodisperse active and passive particles. The particles are initially randomly positioned inside a fixed boundary square enclosure. The active particles can move with their self-propulsion force. Whereas, the passive particles do not have any self-propulsion force, and they move by the spatial interactions with other particles. An alignment force in our discrete element model causes the emergence of collective milling motion. Without this alignment interaction, the particle system remains in a disordered phase. Whereas, the ordered milling phase is attained after achieving a minimum coordination among neighboring particles. The phase transition from disordered to ordered depends upon the relative effect of self-propulsion and the alignment, initial states of the particles, noise level, and the fraction of the active particles present in the system. The phase transition we observed is of first-order nature.
Volume
101
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback