Options
Chemical Simultaneous Synthesis Strategy of Two Nitrogen-Rich Carbon Nanomaterials for All-Solid-State Symmetric Supercapacitor
Date Issued
13-12-2018
Author(s)
Chandrabhan Shende, Rashmi
Muruganathan, Manoharan
Mizuta, Hiroshi
Akabori, Masashi
Indian Institute of Technology, Madras
Abstract
Present work demonstrates a single step process for simultaneous synthesis of metal-nanoparticle-encapsulated nitrogen-doped bamboo-shaped carbon nanotubes (M/N-BCNTs) and graphitic carbon nitride (G-C3N3). The synthesis of two different carbon nanostructures in a single step is recognized for the first time. This process involves the use of inexpensive and nontoxic precursors such as melamine as carbon and nitrogen sources for the growth of G-C3N3 and M/N-BCNTs. In this technique, the utilization of unwanted gases such as ammonia and hydrocarbons released during the decomposition of melamine is the key to grow M/N-BCNTs over the catalyst along with the formation of G-C3N4. The implementation of M/N-BCNTs as the electrode material for all-solid-state symmetric supercapacitor results in a maximum specific capacitance of ∼368 F g-1 with excellent electrochemical stability with 97% capacity retention after 10 000 cycles. Furthermore, fabricated symmetric supercapacitor shows maximum high energy and power density up to 10.88 W h kg-1 and 2.06 kW kg-1, respectively. The superior electrochemical activity of M/N-BCNTs can be attributed to its high surface to area volume ratio, unique structural characteristics, ultrahigh electrical conductivity, and carrier mobility.
Volume
3