Options
Domain wall motion in multiferroic nanostructures under the influence of spin-orbit torque and nonlinear dissipative effect
Date Issued
01-01-2022
Author(s)
Abstract
This article analytically investigates the one-dimensional motion of magnetic domain walls along a thin magnetostrictive nanostrip in a trilayer stack. This study is done under the framework of the extended Landau-Lifshitz-Gilbert equation. We consider the effect of stresses generated by the piezoelectric actuator, spin-orbit interactions caused by structural inversion asymmetry (Rashba and Spin-Hall effects), and dry-friction dissipation responsible for the structural disorder in the ferromagnetic material. First, we derive an explicit analytical expression of the domain wall velocity in the steady-state regime by employing the traveling waves ansatz and realistic assumptions on the considered parameters. It is observed that the strength of magnetostriction, Rashba and Spin-Hall effects, and dry friction affect the depinning threshold and Walker-breakdown, which represent the boundaries of a steady dynamical regime. Next, we numerically illustrate the presented analytical results and find they are in qualitatively good agreement with recent observations reported in the literature.