Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. Utilizing support vector regression modeling to predict pyro product yields from microwave-assisted catalytic co-pyrolysis of biomass and waste plastics
 
  • Details
Options

Utilizing support vector regression modeling to predict pyro product yields from microwave-assisted catalytic co-pyrolysis of biomass and waste plastics

Date Issued
15-09-2023
Author(s)
Potnuri, Ramesh
Rao, Chinta Sankar
Surya, Dadi Venkata
Kumar, Abhishankar
Tanmay Basak 
Indian Institute of Technology, Madras
DOI
10.1016/j.enconman.2023.117387
Abstract
The rise in plastic waste production has led to the development of co-pyrolysis of waste plastics and biomass as a potential solution. This process converts waste into valuable resources, including chemicals and pollutant-absorbing materials. Accurately predicting product yields is crucial and involves considering feedstock characteristics and pyrolysis conditions. No previous work on machine learning (ML) predicts pyro-products considering catalyst and blend as input features. This study used a support vector machine (SVM) to predict pyro-product yields from microwave-assisted co-pyrolysis of biomass and plastics. SVM models were trained, validated, and then applied to new data. The results showed high predictive accuracy, with R2 values of 0.96, 0.93, and 0.91 for bio-oil, biochar, and biogas, respectively. The SVM model demonstrated strong predictive capabilities, indicating effective generalization ability based on statistical parameters. Additionally, SVM models incorporating all features performed better than those based on 'elementary analysis (EA)' and 'proximate analysis (PA)' alone. The pearson correlation coefficient (PCC) approach assessed the correlation between input features to remove highly correlated variables. The partial dependence analysis reveals the individual effects of influential factors and their interactions in the co-pyrolysis process, highlighting significant features like carbon, hydrogen, ash, volatile matter, and nitrogen content that influence oil, char, and gas yields, thereby providing valuable insights for optimization strategies in co-pyrolysis.
Volume
292
Subjects
  • Biomass

  • Co-pyrolysis

  • Machine learning

  • Microwave-assisted py...

  • Support vector regres...

  • Waste plastic

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback