Options
Processing and mechanical behavior of lamellar structured degradable magnesium-hydroxyapatite implants
Date Issued
01-12-2014
Author(s)
Ratna Sunil, B.
Ganapathy, C.
Sampath Kumar, T. S.
Indian Institute of Technology, Madras
Abstract
Multilayered (laminated) composites exhibit tunable mechanical behavior compared to bulk materials due to the presence of more interfaces and therefore magnesium based composites are gaining wide popularity as biodegradable materials targeted for temporary implant applications. The objective of the present work is to fabricate magnesium based lamellar metal matrix composites (MMCs) for degradable implant applications. Nano-hydroxyapatite (HA) powder was selected as the secondary phase and lamellar structured magnesium-nano-hydroxyapatite (Mg-HA) composites of 8, 10 and 15. wt% HA were fabricated by ball milling and spark plasma sintering. It was found that HA particles were coated on the Mg flakes after 20. h of ball milling carried out using tungsten carbide (WC) as the milling media. Spark plasma sintering of the milled powders resulted in the formation of lamellar structure of Mg with the presence of HA and magnesium oxide (MgO) at the inter-lamellar sites of the composites. Phase analysis of the milled powder by an X-ray diffraction (XRD) method confirms the presence of HA and MgO along with Mg after sintering. Corrosion behavior of the composites investigated by potentiodynamic polarization tests shows a reduction in the inter-lamellar corrosion with increase in HA content and the best corrosion resistance is found for the Mg-10% HA composite. This composite also exhibits maximum Vickers hardness. Young[U+05F3]s modulus and fracture toughness measured by nano-indentation method were higher for the Mg-8% HA composite. The results thus suggest that lamellar structured Mg composites with 8% and 10% HA show promise for temporary degradable orthopedic implant applications because of their improved corrosion resistance and superior mechanical properties.
Volume
40