Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. A cell-based smoothed finite element method for finite elasticity
 
  • Details
Options

A cell-based smoothed finite element method for finite elasticity

Date Issued
01-01-2022
Author(s)
Francis, Amrita
Sundararajan Natarajan 
Indian Institute of Technology, Madras
Lee, Changkye
Budarapu, Pattabhi R.
DOI
10.1080/15502287.2022.2030427
Abstract
In this study, we present a displacement based polygonal finite element method for compressible and nearly-incompressible elastic solids undergoing large deformations in two dimensions. This is achieved by projecting the dilatation strain onto the linear approximation space, within the framework of volume averaged nodal projection method. To reduce the numerical integration burden over polytopes, a linear strain smoothing technique is employed to compute the terms in the bilinear/linear form. The salient features of the proposed framework are: (a) does not require derivatives of shape functions and complex numerical integration scheme to compute the bilinear and linear form and (b) volumetric locking is alleviated by adopting the volume averaged nodal projection technique. The efficacy, convergence properties and accuracy of the proposed framework is demonstrated through four standard benchmark problems.
Volume
23
Subjects
  • arbitrary polytopes

  • hyperelastic model

  • large deformation

  • Smoothed finite eleme...

  • strain smoothing

  • Wachspress basis func...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback