Options
Differentiation of dichotomous emotional states in electrodermal activity signals using higher-order crossing features and parametric classifiers
Date Issued
01-04-2021
Author(s)
Veeranki, Yedukondala Rao
Ganapathy, Nagarajan
Indian Institute of Technology, Madras
Abstract
Prediction and recognition of happy and sad emotional states play important roles in many aspects of human life. In this work, an attempt has been made to classify them using Electrodermal Activity (EDA). For this, EDA signals are obtained from a public database and decomposed into tonic and phasic components. Features, namely Hjorth and higher-order crossing, are extracted from the phasic component of the signal. Further, these extracted features are fed to four parametric classifiers, namely, linear discriminant analysis, logistic regression, multilayer perceptron, and naive bayes for the classification. The results show that the proposed approach can classify the dichotomous happy and sad emotional states. The multilayer perceptron classifier is accurate (85.7%) in classifying happy and sad emotional states. The proposed method is robust in handling the dynamic variation of EDA signals for happy and sad emotional states. Thus, it appears that the proposed method could be able to understand the neurological, psychiatrical, and biobehavioural mechanisms of happy and sad emotional states.
Volume
57