Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. Deep learning potential of mean force between polymer grafted nanoparticles
 
  • Details
Options

Deep learning potential of mean force between polymer grafted nanoparticles

Date Issued
28-09-2022
Author(s)
Gautham, Sachin M.B.
Tarak Patra 
Indian Institute of Technology, Madras
DOI
10.1039/d2sm00945e
Abstract
Grafting polymer chains on the surfaces of nanoparticles is a well-known route to control their self-assembly and distribution in a polymer matrix. A wide variety of self-assembled structures are achieved by changing the grafting patterns on the surface of an individual nanoparticle. However, an accurate estimation of the effective potential of mean force between a pair of grafted nanoparticles that determines their assembly and distribution in a polymer matrix is an outstanding challenge in nanoscience. We address this problem via deep learning. As a proof of concept, here we report a deep learning framework that learns the interaction between a pair of single-chain grafted spherical nanoparticles from their molecular dynamics trajectory. Subsequently, we carry out the deep learning potential of mean force-based molecular simulation that predicts the self-assembly of a large number of single-chain grafted nanoparticles into various anisotropic superstructures, including percolating networks and bilayers depending on the nanoparticle concentration in three-dimensions. The deep learning potential of mean force-predicted self-assembled superstructures are consistent with the actual superstructures of single-chain polymer grafted spherical nanoparticles. This deep learning framework is very generic and extensible to more complex systems including multiple-chain grafted nanoparticles. We expect that this deep learning approach will accelerate the characterization and prediction of the self-assembly and phase behaviour of polymer-grafted and unfunctionalized nanoparticles in free space or a polymer matrix.
Volume
18
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback