Options
An Optimized Digital Watermarking Scheme Based on Invariant DC Coefficients in Spatial Domain
Date Issued
2020
Author(s)
Ali, M
Ahn, CW
Pant, M
Kumar, S
Singh, MK
Saini, D
Abstract
Digital watermarking has become an essential and important tool for copyright protection, authentication, and security of multimedia contents. It is the process of embedding a watermark in the multimedia content and its extraction. Block-based discrete cosine transform (DCT) is a widely used method in digital watermarking. This paper proposes a novel blind image watermarking scheme developed in the spatial domain by quantization of invariant direct current (DC) coefficients. The cover image is redistributed and divided into non-overlapped square blocks and then the DC coefficients invariant to rotation, row and column flip operations, without utilization of the DCT transform, are directly calculated in the spatial domain. Utilizing the quantization parameter and watermark information, the modified DC coefficients and the difference between DC and modified DC coefficients are calculated to directly modify the pixel values to embed watermark bits in the spatial domain instead of the DCT domain. Optimal values of the quantization parameter, which plays a significant role in controlling the tradeoff between robustness and invisibility, are calculated through differential evolution (DE), the optimization algorithm. Experimental results, compared with the latest similar schemes, demonstrate the advantages of the proposed scheme.
Volume
9