Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication8
  4. Effect of hydrogen addition in the co-flow of a methane diffusion flame in reducing nitric oxide emissions
 
  • Details
Options

Effect of hydrogen addition in the co-flow of a methane diffusion flame in reducing nitric oxide emissions

Date Issued
01-12-2012
Author(s)
Arun, S.
Raghuram, S.
Sreenivasan, R.
Raghavan, Vasudevan
DOI
10.1016/j.ijhydene.2012.10.016
Abstract
The paper presents numerical simulations of a core methane jet diffusion flame with a fuel lean mixture (consisting of methane and hydrogen, in different proportions) in the co-flow. A comprehensive numerical model, which employs a detailed chemical kinetic mechanism with 25 species and 121 reaction steps, variable thermo-physical properties, multi-component diffusion and an optically thin radiation sub-model, has been used. The results of the numerical model are validated against the experimental data from literature. The validated model is used to study the characteristics of core methane jet diffusion flames with methane and hydrogen in the co-flow. A detailed study of various quantities such as temperature, sensible enthalpies of combustion and nitric oxide emissions is carried out, for different compositions of the fuel in the co-flow oxidizer stream. The co-flow composition which results in minimum nitric oxide emissions is examined. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Volume
37
Subjects
  • Detailed chemical kin...

  • Diffusion flames

  • Lean fuel mixture

  • Nitric oxide emission...

  • Optically thin radiat...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback