Options
Investigation of stamping tool wear initiation at microscopic level using acoustic emission sensors
Date Issued
01-01-2019
Author(s)
Shanbhag, Vignesh V.
Rolfe, Bernard F.
Indian Institute of Technology, Madras
Pereira, Michael P.
Abstract
Stamping tools are prone to an adhesive wear mode called galling. Adhesive wear on stamping tools can degrade the product quality and can affect the mass production. Even a small improvement in the maintenance process is beneficial for the stamping industry. Therefore, this study will focus on understanding and detecting the initiation of tool wear at the microscopic level in sheet metal stamping using acoustic emission sensors. Stamping tests were performed using a semi-industrial stamping process, which can perform clamping, piercing, stamping and trimming in a single cycle. The stamping test was performed using a high strength low alloy sheet steel and D2 tool steel for dry and lubricated conditions. The acoustic emission signal was recorded for each stamped part until severe wear on the dies was observed. These acoustic emission signals were later analyzed using time and frequency domain features. The time domain features such as peak, RMS, kurtosis and skewness could identify significant changes in the acoustic emission signal only when the severe wear was observed on the stamped parts for both dry and lubricated conditions. However, this study has identified that a frequency feature – known as mean-frequency estimate – could identify early stages of wear initiation at the microscopic level. Evidence of this early stage of wear on the part surfaces was not clearly visible to the naked eye, and could only be clearly observed via surface measurement instruments such as an optical profilometer. The sidewalls of the stamped parts corresponding to the initial change in AE mean-frequency trend were qualitatively correlated with 3D profilometer scans of the stamped parts, to show that AE mean-frequency can indicate the initial minor scratches on the sidewalls of the stamped parts due to the galling wear on the die radii surfaces. The results from this study can be used to develop a methodology to determine the very early stages of stamping tool wear, providing a strong basis for condition monitoring in the stamping industry.
Volume
794 KEM