Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Approximation properties of bivariate α-fractal functions and dimension results
 
  • Details
Options

Approximation properties of bivariate α-fractal functions and dimension results

Date Issued
01-01-2021
Author(s)
Jha, Sangita
Chand, A. K.B. 
Indian Institute of Technology, Madras
Navascués, M. A.
Sahu, Abhilash
DOI
10.1080/00036811.2020.1721472
Abstract
In this paper, we study a different class of bivariate α-fractal functions. First, we introduce the bivariate Bernstein α-fractal functions that are more suitable to approximate both smooth and non-smooth surfaces and investigate their convergence properties. Then, we compute the box-counting dimension of the graph of the bivariate α-fractal functions for equally spaced data set. In regard to the connection of functional analysis and fractal function, we cogitate the bivariate fractal operator in spaces of functions such as k-times continuously differentiable functions space (Formula presented.) and the Lebesgue space (Formula presented.). Also, we study some approximation properties using bivariate Bernstein α-fractal trigonometric functions.
Volume
100
Subjects
  • 28A80

  • 42A15

  • 42A20

  • 46B25

  • 65T40

  • box dimension

  • convergence

  • Fractal function

  • function space

  • trigonometric approxi...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback