Options
Depletion zone in two-dimensional deposits of soft microgel particles
Date Issued
15-07-2023
Author(s)
Abstract
Hypothesis: Microgels are a class of model soft colloids that act like surfactants due to their amphiphilicity and are spontaneously adsorbed to the fluid-air interface. Here, we exploit the surfactant-like characteristics of microgels to generate Marangoni stress-induced fluid flow at the surface of a drop containing soft colloids. This Marangoni flow combined with the well-known capillary flow that arises during the evaporation of a drop placed on a solid surface, leads to the formation of a novel two-dimensional deposit of particles with distinct depletion zones at its edge. Experiments: The evaporation experiments using sessile and pendant drops containing microgel particles were carried out, and the microstructure of the final particulate deposits were recorded. The kinetics of the formation of the depletion zone and its width is studied by tracking the time evolution of the microgel particle monolayer adsorbed to the interface using in situ video microscopy. Findings: The experiments reveal that the depletion zone width linearly increases with droplet volume. Interestingly, the depletion zone width is larger for drops evaporated in pendant configuration than the sessile drops, which is corroborated by considering the gravitational forces exerted on the microgel assembly on the fluid-air interface. The fluid flows arising from Marangoni stresses and the effect of gravity provide novel ways to manipulate the self-assembly of two-dimensional layers of soft colloids.
Volume
642