Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication4
  4. Influence of mechanically activated annealing on phase evolution in Al<inf>0.3</inf>CoCrFeNi high-entropy alloy
 
  • Details
Options

Influence of mechanically activated annealing on phase evolution in Al<inf>0.3</inf>CoCrFeNi high-entropy alloy

Date Issued
01-12-2019
Author(s)
John, Rahul
Karati, Anirudha
Garlapati, Mohan Muralikrishna
Vaidya, Mayur
Bhattacharya, Rahul
Fabijanic, Daniel
Murty, B. S.
DOI
10.1007/s10853-019-03917-7
Abstract
In the present work, the concept of mechanically activated annealing (MAA) has been applied to produce nanocrystalline Al0.3CoCrFeNi high-entropy alloys (HEAs) with reduced contamination levels. Phase evolution during conventional mechanical alloying (MA), MAA and subsequent consolidation by spark plasma sintering (SPS) have been studied in detail. Complete alloying is obtained after 15 h of MA, while milling time of 5 h and annealing at 1100 °C for 1 h have been used to achieve alloy formation during MAA. Both the MA–SPS and MAA–SPS routes have shown major FCC phase. The contamination of WC observed during MA was successfully eliminated during MAA, while the volume fraction of Cr7C3 reduced from 20% during MA–SPS to 10% after MAA–SPS. This method can serve as an effective way to produce nanostructured HEAs with minimum contamination.
Volume
54
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback