Options
Finite element based member stiffness evaluation of axisymmetric bolted joints
Date Issued
01-01-2009
Author(s)
Indian Institute of Technology, Madras
Kumar, T. Sasi
Abstract
For a reliable design of bolted joints, it is necessary to evaluate the actual fraction of the external load transmitted through the bolt. The stiffness of the bolt and the member of the joint decide the fractions of external load shared by the bolt and the member. Bolt stiffness can be evaluated simply by assuming the load flow to be uniform across the thickness and the deformation is homogeneous. Then, bolt may be modeled as a tension member and the stiffness can be easily evaluated. But, the evaluation of the member stiffness is difficult because of the heterogeneous deformation. In the present work, joint materials are assumed to be isotropic and homogeneous, and linear elastic axisymmetric finite element analysis was performed to evaluate the member stiffness. Uniform displacement and uniform pressure assumptions are employed in idealizing the boundary conditions. Wide ranges of bolt sizes, joint thicknesses, and material properties are considered in the analysis to evaluate characteristic behavior of member stiffness. Empirical formulas for the member stiffness evaluation are proposed using dimensionless parameters. The results obtained are compared with the results available in the literature. Copyright © 2009 by ASME.
Volume
131