Options
Non destructive evaluation (NDE) using multi-aperture DSPI system and fast Fourier transform method
Date Issued
01-12-2007
Author(s)
Bhaduri, Basanta
Mohan, N. Krishna
Kothiyal, M. P.
Abstract
Digital speckle pattern interferometry (DSPI) and digital shearography (DS) are two independent whole-field non-contacting optical methods for nondestructive flaw detection and precision measurements. A multi-aperture arrangement in front the imaging lens provides the grid structure within the speckles to yield desired diffraction halos at the Fourier transform plane. A three aperture arrangement in front of the imaging system is proposed here to combine coherently three waves at the CCD plane and also to introduce spatial carrier fringes within the speckle. One of the apertures is used for imaging the object onto the CCD plane, the second aperture for introducing smooth reference wave, while the third aperture carries a small angle wedge plate to provide the shear. This method allows simultaneous phase evaluation of the out-of-plane displacement and its first order derivative (slope) by filtering the appropriate diffraction halos of the Fourier spectrum. In this paper, we describe a (1, N) phase shifting technique with fast Fourier transform (FFT) for non destructive evaluation (NDE) of quasi-dynamic behavior of objects subject to slowly varying loads. The prominent advantage of the technique is that, it requires only a single frame prior to the object deformation and N number of frames during the object deformation for NDE. Experimental results are presented on a honeycomb structure subjected to thermal load.
Volume
6671