Options
Application of Chlorella vulgaris for nutrient removal from synthetic wastewater and MBR-treated bio-park secondary effluent: growth kinetics, effects of carbon and phosphate concentrations
Date Issued
01-03-2023
Author(s)
Ms, Krishnapriya
Johnson, Inigo
Ngo, Huu Hao
Guo, Wenshan
Indian Institute of Technology, Madras
Abstract
Application of Chlorellavulgaris for polishing secondary effluent of a wastewater treatment (containing C, N and P) was investigated. As a first step, batch experiments were conducted in Bold’s Basal Media (BBM) to quantify the effects of orthophosphates (0.1–107 mg/L), organic carbon (0–500 mg/L as acetate) and N/P ratio on the growth of Chlorella vulgaris. The results revealed that the orthophosphate concentration was found to control the removal rates of nitrates and phosphates; however, both were effectively removed (> 90%) when the initial orthophosphate concentration was 4–12 mg/L. The maximum nitrate and orthophosphate removals were observed at an N:P ratio of ~ 11. However, the specific growth rate (µ) was significantly increased (from 0.226 to 0.336 g/g/day) when the initial orthophosphate concentration was 0.1–4.3 mg/L. On the other hand, the presence of acetate had significantly improved the specific growth and specific nitrate removal rates of Chlorella vulgaris. The specific growth rate increased from 0.34 g/g/day in a purely autotrophic culture to 0.70 g/g/day in the presence of acetate. Subsequently, the Chlorella vulgaris (grown in BBM) was acclimated and grown in the membrane bioreactor (MBR)–treated real-time secondary effluent. Under the optimised conditions, 92% nitrate and 98% phosphate removals (with a growth rate of 0.192 g/g/day) were observed in the bio-park MBR effluent. Overall, the results indicate that coupling Chlorella vulgaris as a polishing treatment in existing wastewater treatment units could be beneficial for highest level of water reuse and energy recovery goals.
Volume
195