Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Introducing Tween-curcumin niosomes: Preparation, characterization and microenvironment study
 
  • Details
Options

Introducing Tween-curcumin niosomes: Preparation, characterization and microenvironment study

Date Issued
21-02-2020
Author(s)
Sahu, Anand Kumar
Mishra, Jhili
Mishra, Ashok Kumar 
Indian Institute of Technology, Madras
DOI
10.1039/c9sm02416f
Abstract
In this work, we report unusual niosomes (non-ionic surfactant based vesicles), prepared using non-ionic surfactant Tween 80 (T80) as well as Tween 20 (T20) and curcumin. Conventional niosomes consist of non-ionic surfactant and cholesterol. We found that, despite being a probiotic, curcumin plays a similar role to cholesterol in the formation and stabilization of niosomes. The prepared Tween-curcumin niosomes were characterised using Dynamic Light Scattering (DLS), zeta potential, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and Transmission Electron Microscopy (TEM) techniques. The curcumin-induced micelle to vesicle transition in the Tween surfactants was investigated by DLS, zeta potential, fluorescence anisotropy, and fluorescence lifetime studies. At room temperature (298 K), the prepared niosomes were found to be stable; however, at a higher temperature (333 K), the niosomes degrade gradually and irreversibly to form micelles. The temperature-dependent vesicle to micelle degradation was monitored using fluorescence anisotropy, absorption, DLS and Differential Scanning Calorimetry (DSC) measurements. Further, the Tween-curcumin niosomes show a controlled release of curcumin, which could open up the possibility of multidrug therapy.
Volume
16
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback