Options
Vani Janakiraman
Loading...
Preferred name
Vani Janakiraman
Official Name
Vani Janakiraman
Alternative Name
Janakiraman, Vani
Main Affiliation
Email
ORCID
Scopus Author ID
Google Scholar ID
4 results
Now showing 1 - 4 of 4
- PublicationMutations in spike protein T cell epitopes of SARS-COV-2 variants: Plausible influence on vaccine efficacy(01-09-2022)
;Sankaranarayanan, S. ;Mohkhedkar, MugdhaWith emerging SARS-CoV-2 variants, vaccines approved so far are under scrutiny for long term effectiveness against the circulating strains. There is a prevalent obsession with humoral immunity as in vitro studies have indicated diminished effects of vaccine-induced neutralizing antibodies. However, this need not clinically translate to vaccine resistance as immune response against all forms of present vaccine preparations is T dependent unlike that against native viral particles which can induce T independent immune responses. Thus, we focused on this major correlate of protection against infections, T cell response. Using bioinformatics tools, we analyzed SARS-CoV-2 Spike protein T cell epitopes and their diversity across Delta plus/B.1.617.2.1, Gamma/P.1 (variant of concern), B.1.1.429, Zeta/P.2 and Mink cluster 5/B.1.1.298 variants as well as Omicron/B.1.1.529 (variant of concern). We also compared HLA restriction profiles of the mutant epitopes with that of the native epitopes (from Wuhan_hu_1 strain, used in vaccine formulations). Our observations show ~90% conservation of CD4+ and CD8+ epitopes across Delta plus/B.1.617.2.1, Gamma/P.1 (variant of concern), B.1.1.429, Zeta/P.2 and Mink cluster 5/B.1.1.298. For the Omicron/B.1.1.529 variant, ~75% of CD4+ and ~ 87% CD8+ epitopes were conserved. Majority of the mutated CD4+ and CD8+ epitopes of this variant were predicted to retain the HLA restriction pattern as their native epitopes. The results of our bioinformatics analysis suggest largely conserved T cell responses across the studied variants, ability of T cells to tackle new SARS-CoV-2 variants and aid in protection from COVID-19 post vaccination. In conclusion, the results suggest that current vaccines may not be rendered completely ineffective against new variants. - PublicationAutoantigens that may explain postinfection autoimmune manifestations in patients with coronavirus disease 2019 displaying neurological conditions(01-02-2021)
;Mohkhedkar, Mugdha ;Venigalla, Siva Sai Krishna - PublicationAb-CoV: a curated database for binding affinity and neutralization profiles of coronavirus-related antibodies(15-08-2022)
;Rawat, Puneet ;Sharma, Divya ;Prabakaran, R. ;Ridha, Fathima ;Mohkhedkar, Mugdha; Summary: We have developed a database, Ab-CoV, which contains manually curated experimental interaction profiles of 1780 coronavirus-related neutralizing antibodies. It contains more than 3200 datapoints on half maximal inhibitory concentration (IC50), half maximal effective concentration (EC50) and binding affinity (KD). Each data with experimentally known three-dimensional structures are complemented with predicted change in stability and affinity of all possible point mutations of interface residues. Ab-CoV also includes information on epitopes and paratopes, structural features of viral proteins, sequentially similar therapeutic antibodies and Collier de Perles plots. It has the feasibility for structure visualization and options to search, display and download the data. - PublicationUntangling COVID-19 and autoimmunity: Identification of plausible targets suggests multi organ involvement(01-09-2021)
;Mohkhedkar, Mugdha ;Venigalla, Siva Sai KrishnaUnderlying mechanisms of multi-organ manifestations and exacerbated inflammation in COVID-19 are yet to be delineated. The hypothesis of SARS-CoV-2 triggering autoimmunity is gaining attention and, in the present study, we have identified 28 human proteins harbouring regions homologous to SARS-CoV-2 peptides that could possibly be acting as autoantigens in COVID-19 patients displaying autoimmune conditions. Interestingly, these conserved regions are amongst the experimentally validated B cell epitopes of SARS-CoV-2 proteins. The reported human proteins have demonstrated presence of autoantibodies against them in typical autoimmune conditions which may explain the frequent occurrence of autoimmune conditions following SARS-CoV-2 infection. Moreover, the proposed autoantigens’ widespread tissue distribution is suggestive of their involvement in multi-organ manifestations via molecular mimicry. We opine that our report may aid in directing subsequent necessary antigen-specific studies, results of which would be of long-term relevance in management of extrapulmonary symptoms of COVID-19.