Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication4
  4. Cysteine immobilisation on the polyethylene terephthalate surfaces and its effect on the haemocompatibility
 
  • Details
Options

Cysteine immobilisation on the polyethylene terephthalate surfaces and its effect on the haemocompatibility

Date Issued
01-12-2019
Author(s)
Ramachandran, Balaji
Muthuvijayan, Vignesh 
Indian Institute of Technology, Madras
DOI
10.1038/s41598-019-53108-2
Abstract
Nitric oxide (NO) is an important signalling molecule involved in haemostasis. NO, present as endogenous S-nitrosothiols, is released by cysteine through a transnitrosation reaction. To exploit this mechanism, cysteine was immobilised onto the different carboxylated polyethylene terephthalate (PET) surfaces using 1-step EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) crosslinking mechanism. Immobilised cysteine concentration and NO release were dependent on the surface carboxyl density. Stability studies showed that the immobilised cysteine concentration and NO release reduced within 6 h. Immobilisation of cysteine derivatives eliminated the possibility of formation of polycysteine and its electrostatic interaction with the carboxylated PET. The immobilised cysteine concentration did not recover after DTT treatment, eliminating the possibility of disulphide bond formation. Further, cysteine was immobilised using a 2-step EDC crosslinking mechanism. Although the cysteine concentration reduced during stability studies, it recovered upon DTT treatment, indicating that cysteine forms amide bonds with the carboxylated PET and the observed decrease in cysteine concentration is probably due to the formation of disulphide bonds. The haemocompatibility of the cysteine immobilised PET surfaces showed similar results compared to the carboxylated PET. The loss of thiol groups due to the disulphide bond restricts the transnitrosation reaction. Hence, these materials can be used primarily in short-term applications.
Volume
9
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback