Options
Transition to chaos in the flow-induced vibration of a pitching–plunging airfoil at low Reynolds numbers : Ruelle–Takens–Newhouse scenario
Date Issued
01-03-2019
Author(s)
Bose, Chandan
Indian Institute of Technology, Madras
Indian Institute of Technology, Madras
Abstract
This study focuses on numerically analyzing the transition from periodic to chaotic dynamics in the fluid-elastic response of a 2-dof flexibly-mounted airfoil with chord-wise rigidity. The computational framework is composed of a high fidelity Navier–Stokes solver, weakly coupled with a structural model having geometric nonlinearity represented by cubic order stiffness terms. A low Reynolds number flow regime and a very low structure-to-fluid added mass ratio have been considered to simulate the flying conditions of very light-weight unmanned devices. A bifurcation analysis of the system, in the absence of actuation or control forces, is undertaken with the wind velocity as the control parameter. The route to chaos – identified to be the Ruelle–Takens–Newhouse quasi-periodic route – is established for the first time for a flexible pitch–plunge flapping system. Robust nonlinear time series analysis techniques have been implemented to characterize different complex dynamical states present in the system.
Volume
109