Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Challenges in the choice of the nonconformal coupling function in inflationary magnetogenesis
 
  • Details
Options

Challenges in the choice of the nonconformal coupling function in inflationary magnetogenesis

Date Issued
15-03-2022
Author(s)
Tripathy, Sagarika
Chowdhury, Debika
Jain, Rajeev Kumar
L Sriramkumar 
Indian Institute of Technology, Madras
DOI
10.1103/PhysRevD.105.063519
Abstract
Primordial magnetic fields are generated during inflation by considering actions that break the conformal invariance of the electromagnetic field. To break the conformal invariance, the electromagnetic fields are coupled either to the inflaton or to the scalar curvature. Also, a parity violating term is often added to the action in order to enhance the amplitudes of the primordial electromagnetic fields. In this work, we examine the effects of deviations from slow roll inflation on the spectra of nonhelical as well as helical electromagnetic fields. We find that, in the case of the coupling to the scalar curvature, there arise certain challenges in generating electromagnetic fields of the desired shapes and strengths even in slow roll inflation. When the field is coupled to the inflaton, it is possible to construct model-dependent coupling functions that lead to nearly scale invariant magnetic fields in slow roll inflation. However, we show that sharp features in the scalar power spectrum generated due to departures from slow roll inflation inevitably lead to strong features in the power spectra of the electromagnetic fields. Moreover, we find that such effects can also considerably suppress the strengths of the generated electromagnetic fields over the scales of cosmological interest. We illustrate these aspects with the aid of inflationary models that have been considered to produce specific features in the scalar power spectrum. Further, we find that, in such situations, if the strong features in the electromagnetic power spectra are to be undone, the choice of the coupling function requires considerable fine tuning. We discuss wider implications of the results we obtain.
Volume
105
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback