Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication6
  4. What Do Detectors Detect?
 
  • Details
Options

What Do Detectors Detect?

Date Issued
01-01-2017
Author(s)
L Sriramkumar 
Indian Institute of Technology, Madras
DOI
10.1007/978-3-319-51700-1_27
Abstract
By a detector, one has in mind a point particle with internal energy levels, which when set in motion on a generic trajectory can get excited due to its interaction with a quantum field. Detectors have often been considered as a helpful tool to understand the concept of a particle in a curved spacetime. Specifically, they have been used extensively to investigate the thermal effects that arise in the presence of horizons. In this article, I review the concept of detectors and discuss their response when they are coupled linearly as well as non-linearly to a quantum scalar field in different situations. In particular, I discuss as to how the response of detectors does not necessarily reflect the particle content of the quantum field. I also describe an interesting ‘inversion of statistics’ that occurs in odd spacetime dimensions for ‘odd couplings’, i.e. the response of a uniformly accelerating detector is characterized by a Fermi–Dirac distribution even when it is interacting with a scalar field. Moreover, by coupling the detector to a quantum field that is governed by a modified dispersion relation arising supposedly due to quantum gravitational effects, I examine the possible Planck scale modifications to the response of a rotating detector in flat spacetime. Lastly, I discuss as to why detectors that are switched on for a finite period of time need to be turned on smoothly in order to have a meaningful response.
Volume
187
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback