Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication4
  4. Computational and experimental study of sand entrapment in a hydrocyclone during desanding operations in oil fields: Consequences for leakage and separation efficiency
 
  • Details
Options

Computational and experimental study of sand entrapment in a hydrocyclone during desanding operations in oil fields: Consequences for leakage and separation efficiency

Date Issued
01-01-2019
Author(s)
Khalde, Chirag M.
Samad, Abdus 
Indian Institute of Technology, Madras
Sangwai, Jitendra S. 
Indian Institute of Technology, Madras
DOI
10.2118/195693-PA
Abstract
In the oil and gas industry, upstream and downstream hydrocyclones are used extensively to separate heavy or dense particles from the formation water/reservoir fluids. These hydrocyclones, after a long period of operation, can fail as a result of wear-initiated leakage, thereby needing maintenance or replacement. A detailed investigation of this failure was carried out using computational fluid dynamics (CFD). One-way and two-way coupling of a discrete phase model was used along with the Reynolds stress turbulence model (RSM). Experimental studies were conducted to understand the flow dynamics within the hydrocyclone and to validate the computational model. Key findings, such as bifurcation of the inlet flow, local acceleration of fluid within the hydrocyclone, the impact of the sand drain pipe on fractional efficiency, and the impact of multiple particle sizes and density interactions on the degree of particle entrapment, are discussed in detail. The approach and results presented in this work provide useful insights and a systematic basis for improving the service life and separation efficiency of the hydrocyclone.
Volume
34
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback