Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication4
  4. Artificial neural network-based prediction of effective thermal conductivity of a granular bed in a gaseous environment
 
  • Details
Options

Artificial neural network-based prediction of effective thermal conductivity of a granular bed in a gaseous environment

Date Issued
15-07-2019
Author(s)
Desu, Raghuram Karthik
Peeketi, Akhil Reddy
Annabattula, Ratna Kumar 
Indian Institute of Technology, Madras
DOI
10.1007/s40571-019-00228-1
Abstract
Artificial neural network (ANN), a machine learning technique, is employed to predict the effective thermal conductivity of granular assemblies in the presence of a stagnant gas. ANN is trained with the help of estimated thermal conductivities calculated through resistor network (RN) model. RN model considers the effect of the presence of stagnant gas and the gas pressure (Smoluchowski effect) for the calculation of effective thermal conductivity. Granular assemblies are generated and compacted through discrete element method (DEM). The ANN is trained to predict the effective thermal conductivity of a granular assembly for a set of measurable experimental parameters (stress and packing fraction) without requiring the knowledge of microstructural details (coordination numbers and overlaps) of the assembly. The predicted effective thermal conductivity values through ANN are in good agreement with the experimental results. Estimation of effective thermal conductivity through the trained ANN is much faster (few seconds compared to few hours required for DEM together with RN approach) with very good accuracy.
Volume
6
Subjects
  • Artificial neural net...

  • Effective thermal con...

  • Granular assembly

  • Machine learning

  • Resistor network mode...

  • Smoluchowski effect

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback