Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication4
  4. Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination
 
  • Details
Options

Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination

Date Issued
01-10-2019
Author(s)
Rajakumaran, Revathy
Boddu, Vinisha
Kumar, Mathava 
Indian Institute of Technology, Madras
Shalaby, Marwa S.
Abdallah, Heba
Chetty, Raghuram 
Indian Institute of Technology, Madras
DOI
10.1016/j.desal.2019.06.018
Abstract
In this investigation, the effect of embedding nanocomposite with different morphology in a polymer-based reverse osmosis (RO) membrane was studied. Thin-film-nanocomposite (TFN) RO membrane was prepared with graphene oxide (GO) and amino-functionalized zinc oxide (ZnO) having different morphologies, i.e. spherical (ZnO-S), flower (ZnO-F) and rod (ZnO-R) shaped nanostructure. The surface properties of the fabricated TFN-RO membrane were investigated using SEM, TEM, XRD, FTIR, AFM, XPS and contact angle measurement. The membrane performance was evaluated using a cross-flow filtration set-up at 25 °C and 20 bar pressure for 2000 mg/L NaCl solution. The experimental results indicated that 0.02 wt% GO-ZnO composite membranes (regardless of their shape) exhibited enhanced hydrophilicity, flux, and permeability. A comparison of different GO-ZnO morphology highlighted that the GO-ZnO-S TFN-RO membrane exhibited superior performance due to the smaller size of ZnO-S, which effectively prevented GO nanosheets from stacking together. The modified membrane with an optimum GO-ZnO-S concentration of 0.02 wt% showed higher solute water flux (31.42 L/m2·h) compared to the pristine TFC membrane (14.28 L/m2·h) with a good salt rejection. Moreover, the modified membranes were found to be chlorine resistant and showed better anti-fouling performance compared to the pristine membrane.
Volume
467
Subjects
  • Desalination

  • Graphene oxide

  • Reverse osmosis

  • Thin film nanocomposi...

  • ZnO nanoparticles

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback