Publication: Electrodermal Activity Based Pre-surgery Stress Detection Using a Wrist Wearable
cris.virtual.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.author-orcid | 0000-0002-6714-9147 | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | Indian Institute of Technology, Madras | |
cris.virtualsource.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.author-orcid | e6b935f2-d800-41e3-b9de-62cbe1725a18 | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | e6b935f2-d800-41e3-b9de-62cbe1725a18 | |
dc.contributor.author | Anusha, A. S. | |
dc.contributor.author | Sukumaran, P. | |
dc.contributor.author | Sarveswaran, V. | |
dc.contributor.author | Surees Kumar, S. | |
dc.contributor.author | Shyam, A. | |
dc.contributor.author | Akl, Tony J. | |
dc.contributor.author | Preejith, S. P. | |
dc.contributor.author | Sivaprakasam, Mohanasankar | |
dc.date.accessioned | 2023-09-19T13:31:44Z | |
dc.date.available | 2023-09-19T13:31:44Z | |
dc.date.issued | 01-01-2020 | |
dc.description.abstract | Surgery is a particularly potent stressor and the detrimental effects of stress on people undergoing any surgery is indisputable. When left unchecked, the pre-surgery stress adversely impacts people's physical and psychological well-being, and may even evolve into severe pathological states. Therefore, it is essential to identify levels of preoperative stress in surgical patients. This paper focuses on developing an automatic pre-surgery stress detection scheme based on electrodermal activity (EDA). The measurement set up involves a wrist wearable that monitors EDA of a subject continuously in the most non-invasive and unobtrusive manner. Data were collected from 41 subjects [17 females and 24 males, age: 54.8 pm 16.8 years (mean pm SD)], who subsequently underwent different surgical procedures at the Sri Ramakrishna Hospital, Coimbatore, India. A supervised machine learning algorithm that detects motion artifacts in the recorded EDA data was developed. It yielded an accuracy of 97.83% on a new user dataset. The clean EDA data were further analyzed to determine low, moderate, and high levels of stress. A novel localized supervised learning scheme based on the adaptive partitioning of the dataset was adopted for stress detection. Consequently, the interindividual variability in the EDA due to person-specific factors such as the sweat gland density and skin thickness, which may lead to erroneous classification, could be eliminated. The scheme yielded a classification accuracy of 85.06% on a new user dataset and proved to be more effective than the general supervised classification model. | |
dc.identifier.doi | 10.1109/JBHI.2019.2893222 | |
dc.identifier.issn | 21682194 | |
dc.identifier.pmid | 30668508 | |
dc.identifier.scopus | 2-s2.0-85077545569 | |
dc.identifier.uri | https://apicris.irins.org/handle/IITM2023/20145 | |
dc.relation.ispartofseries | IEEE Journal of Biomedical and Health Informatics | |
dc.source | IEEE Journal of Biomedical and Health Informatics | |
dc.subject | Electrodermal activity (EDA) | |
dc.subject | pre-surgery stress | |
dc.subject | stress detection | |
dc.subject | wearables | |
dc.title | Electrodermal Activity Based Pre-surgery Stress Detection Using a Wrist Wearable | |
dc.type | Journal | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 100 | |
oaire.citation.issue | 1 | |
oaire.citation.startPage | 92 | |
oaire.citation.volume | 24 | |
oairecerif.author.affiliation | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
oairecerif.author.affiliation | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
oairecerif.author.affiliation | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
oairecerif.author.affiliation | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
oairecerif.author.affiliation | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
oairecerif.author.affiliation | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
oairecerif.author.affiliation | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
oairecerif.author.affiliation | Indian Institute of Technology, Madras | |
person.affiliation.city | Chennai | |
person.affiliation.city | Norwood | |
person.affiliation.city | Coimbatore | |
person.affiliation.id | 60025757 | |
person.affiliation.id | 60023690 | |
person.affiliation.id | 106398454 | |
person.affiliation.name | Indian Institute of Technology Madras | |
person.affiliation.name | Analog Devices, Inc. | |
person.affiliation.name | Sri Ramakrishna Hospital | |
person.identifier.scopus-author-id | 57190980044 | |
person.identifier.scopus-author-id | 57213355695 | |
person.identifier.scopus-author-id | 6602560386 | |
person.identifier.scopus-author-id | 57213351246 | |
person.identifier.scopus-author-id | 57203835932 | |
person.identifier.scopus-author-id | 36058211200 | |
person.identifier.scopus-author-id | 56648102700 | |
person.identifier.scopus-author-id | 6506470218 |